اموزش فارکس در افغانستان

مثلث فراكتالي


Benoit Mandelbrot

شبکه علمی کلاسور

فراکتال (Fractal) ساختاری هندسی است متشکل از اجزایی که با بزرگ کردن هر جزء به نسبت معین، همان ساختار اولیه به دست آید. به عبارتی دیگر فراکتال ساختاری است که هر جزء از آن با کل آن همانند است. شکل زیر یک فراکتال را نشان میدهد که با یک مثلث شروع میشود، شکل دوم با تکرار مثلث ایجاد میشود. به همین ترتیب هر شکل، تکراری از شکل قبل از خود میباشد.

به عبارت دیگر هندسه فراکتالی بیانگر یک الگوی تکرارشونده در اشیا و تصاویر می باشد، یعنی اگر هر تصویر یا شکل دارای این خاصیت به قسمت های کوچکتر تقسیم شود هر کدام از این قسمتهای کوچکتر خود یک کپی کوچک شده از شکل اولیه می باشد. واژه فراکتال مشتق از واژه لاتینی فراکتوس (به معنی سنگی که شکسته و خرد شده است) می باشد که در سال 1975 برای اولین بار توسط مندلبروت (Benoit Mandelbrot) مطرح شد.

هندسه فراکتالی بعنوان زیرشاخه ای از آنالیز مختلط مثلث فراكتالي برای رفع ضعف های هندسه اقلیدسیدر بیان و مثلث فراكتالي مدلسازی از پدیده های طبیعی، بسط و گسترش یافته است. بعد فراکتالی، پارامتری برای بررسی میزان مثلث فراكتالي پیچیدگی بین داده ها است و برخلاف بعد اقلیدسی که یک عدد طبیعی است، می تواند بصورت یک عدد حقیقی باشد

Рекурсивные фракталы: Треугольник Серпинского [JAVA]

Мы видели, первая программа под названием “DrawWorld” мы ввели программирования JAVA ориентированной графики. Давайте изменим это основная программа для генерации основного рекурсивных фрактальной: El Треугольник Серпинского.

Это фрактал, который построен рекурсивно от треугольника, стороны которого делятся на его середине. С помощью этих новых точек, и предыдущих, новые треугольники построены аналогично предыдущему.

Если исходить из треугольника ABC и получить середины его сторон (MNP), Следующий уровень рекурсии будет строить три треугольника ниже: APN, PBM NMC.

Треугольник Серпинского имеет фрактальной размерности Хаусдорфа-Безиковича совпадает с фрактальной размерностью homotecia равным: 1,58496… (W)

Если каждый из этих новых треугольники подразделяются на три, мы будем получать новую фигуру рекурсивно. У нас будет новый уровень рекурсии мы можем контролировать с помощью переменной (nivel_de_recursividad) нашей программы.

Мы определили функцию “paintRecursivo” (Я позвонил из метода “краска”) и в этот момент мы треугольника базы, и рекурсия. Функция вычисляет вершины треугольника, рисует фигуру и называет себя три раза, один для каждого из треугольников.

В каждом вызове функция уменьшает значение рекурсии, так что, مثلث فراكتالي когда она равна нулю отделки проведение рекурсии.

مثلث فراكتالي

سعید[0]

گالیله میگوید: " جهان هستی همواره در برابر دیدگان حیرت زده انسان گسترده خواهد ماند و انسان هرگز نمیتواند آنرا درک کند مگر اینکه زبانی را که این جهان با آن نوشته و توضیح داده شده است یاد بگیرد و حروف آنرا بشناسد. این زبان چیزی جز ریاضیات نیست و این حروف جز مثلث، دایره و سایر اشکال هندسی چیز دیگری نیستند. بدون این زبان انسان حتی یک کلمه از جهان هستی را نخواهد فهمید و همواره گمشده ای را ماند که در کوچه های پر پیچ و خم سرگردان است . "

هندسه فراکتال

فراکتال (Fractal) ساختاری هندسی است متشکل از اجزایی که با بزرگ کردن هر جزء به نسبت معین، همان ساختار اولیه به دست آید. به عبارتی دیگر فراکتال ساختاری است که هر جزء از آن با کل آن همانند است. شکل زیر یک فراکتال را نشان میدهد که با یک مثلث شروع میشود، شکل دوم با تکرار مثلث ایجاد میشود. به همین ترتیب هر شکل، تکراری از شکل قبل از خود میباشد.

به عبارت دیگر هندسه فراکتالی بیانگر یک الگوی تکرارشونده در اشیا و تصاویر می باشد، یعنی اگر هر تصویر یا شکل دارای این خاصیت به قسمت های کوچکتر تقسیم شود هر کدام از این قسمتهای کوچکتر خود یک کپی کوچک شده از شکل اولیه می باشد. واژه فراکتال مشتق از واژه لاتینی فراکتوس (به معنی سنگی که شکسته و خرد شده است) می باشد که در سال 1975 برای اولین بار توسط مندلبروت (Benoit Mandelbrot) مطرح شد.

هندسه فراکتالی بعنوان زیرشاخه ای از آنالیز مختلط برای رفع ضعف های هندسه اقلیدسیدر بیان و مدلسازی از پدیده های طبیعی، بسط و گسترش یافته است. بعد فراکتالی، پارامتری برای بررسی میزان پیچیدگی بین داده ها است و برخلاف بعد اقلیدسی که یک عدد طبیعی است، می تواند بصورت یک عدد حقیقی باشد.

مندل بروت,Mandelbrot


Benoit Mandelbrot

فراکتال ها شکل هایی هستند که بر خلاف شکل های هندسی اقلیدسی به هیچ وجه منظم نیستند. مندلبروت در سال 1975 اعلام کرده که ابرها به مثلث فراكتالي صورت کره نیستند، کوهها همانند مخروط نمی باشند، سواحل دریا دایره شکل نیستند، پوست درخت صاف نیست و صاعقه به صورت خط مستقیم حرکت نمی کند. جسم فراکتال از دور ونزدیک یکسان دیده می شود. به تعبییر دیگر خودمتشابه است.

فراکتال ها از نظر روش مطالعه به فراکتال های جبری و فراکتال های احتمالاتی تقسیم می‌شوند. از طرف دیگر فراکتال ها یا خودهمانند اند یا خودناهمگرد هستند. در خودهمانندی، شکل جزء شباهت محسوسی به شکل کل دارد. این جزء، در همه مثلث فراكتالي جهات به نسبت ثابتی رشد می‌کند و کل را به وجود می‌آورد. اما در خودناهمگردی شکل جزء در همه جهات به نسبت ثابتی رشد نمی‌کند.

مقالات مرتبط

دیدگاهتان را بنویسید

نشانی ایمیل شما منتشر نخواهد شد. بخش‌های موردنیاز علامت‌گذاری شده‌اند *

برو به دکمه بالا